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ABSTRACT

By means of the available experimental gas compressibility data. the predictive accuracy of the
Benedict-Webb-Rubin, Starling and Lee-Kesler equations was tested over wide temperature and
pressure ranges for the following commonly used industrial gases: CH,. C;H,. C;Hg. CO,. Ar, He, H,
and Nj.

n
The root mean square (RMS) percent errors (RMS=[ 3 (% erron)?/n]'/2, where % error =

[ Zeareutated — Zexperimentat )/ Zexperimental] X 100 calculated over 'th:: T—-P range investigated for all com-
pounds, showed a degree of superiority and ease of use of the Lee—Kesler cquation over the Benedict-
Webb-Rubin and Starling equations.

In order to treat quantal fluids H, and He, the Benedict—-Webb-Rubin equation was modified by
making constant B, temperature dependent, while the Starling and Lee—Kesler equations were rewritten
through inclusion of quantum effect corrected pseudo-critical state parameters.

INTRODUCTION

The need for accurate volumetric properties of industrially important fluids is
increasing rapidly in process analysis. The Benedict—Webb—Rubin equation [1-6,28]
and its recent modifications, the Starling [39-43] and Lee—Kesler [21] equations
form a family of one of the more elaborate equations of state that have proved to be
highly useful for process industries in predicting the behavior of phase equilibria.
This study, however, has analyzed the predictive accuracy of each of these equations
of state through the use of the available compressibility data (including data near the
critical point and in the liquid state) calculating the P-V-T properties for the
following relatively small, ranging from inert, non-polar to slightly polar, polar and
quantal common industrial compounds: Ar, CH,, C,H,, C;H,, CO,, He, H, and
N,. Computer programs were set-up to calculate for each of these three equations
the compressibility factors, and the corresponding volumes and densities.

* Present address: Imperial Oil Ltd., Calgary, Alberta, Canada.
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TABLE 1

Summary of data

Compound Critical properties ? Physical properties
T.(K) P. (atm) Acentric Molecular
factor® oF atomic
w weight
H, $3.6/(1+ ,g:‘:r)“ ’0"/“*7:76—# ~0.22 2016
He 1047 /(1 + —2_ )¢ 667 /(1 +—2_ ¢ _0387 4.003
4003 T ’ 4003 T ’ ’
Ar 150.8 48.1 —0.004 39.948
N, 126.2 335 0.040 28.013
CO, 304.2 72.8 0.225 44.01
CH; 190.6 454 0.008 16.043
C.H, 305.4 48.2 0.098 30.07
C.H, 369.8 41.9 0.152 44.097

Experimental data ®

Com- No.of Reduced Reduced Average - Compressibility
pound data pressure temperature  compressibility factor range.Z
peoints  range. P, range. 7, factor

Z.=(1/m3 Z,

H. 26 1.17 -31.65 045~ 15.1 1.103 0.27-1.66
He 32 0.88 -88.0 3.85-130 1.119 0.99~1.62
Ar 3t 0.0% - 410 0.66- 332 0.8166 0.07-1.05
N, 37 006 - 295 0.79- 3.17 0.6505 0.10-1.04
COo, 39 00!l - 1.90 0.95- 187 0.5796 0.13~-1.00
CH, 27 004 - 1.52 0.52- 262 0.8159 0.07-1.00
C,H, 21 004 - 204 065- 205 0.7734 0.34-0.99
C.H, 30 0.016— 7.30 0.84- 1.30 0.6833 0.24-0.98

* Taken from Reid et al. [36] unless indicated otherwise.

" All compressibility data taken from Vargaftik [45) and crosschecked against the data of Din [15] and
Reamer et al. [35] (see discussion on experimental data used, this work).

¢ Compare with Table 4. See also footnote **, p. 22.

The calculated compressibility factors were then evaluated against the experimen-
tal data *. The evaluation was done for each experimental data point in terms of the
root mean square (RMS) percent error defined as

é (% error)?

| =1 .
RMS = = (1)

* It is felt that a P~V-T property representation of pure compound will indicate how the particular
cquation of state will handle various mixtures involving the same pure compound. Indeed if an equation
of state handles effectively the P-V-T properties of compounds, it should also handle well mixtures
containing the same compound and provided we have acceptable mixing rules. (see work oy McFee et al.
[26D.



_in which

V4

calculated ~— Zcxpcn'mental

Z

experimental

% error = X 100 (2)
The “best” equation of state or the “best” set of constants is found by noting which
calculation yields the lowest RMS percent error for the same set of experimental
data. Table 1 presents the summary of data used. It also contains parameter Z,,, *.
Low Z,, value indicates the presence of the more difficult to curve-fit critical ** and
liquid state data points in given data set. Tables2 and 3 present constants and
derived entities for the Benedict—Webb—Rubin equation.

For constant B, (Benedict—Webb-Rubin equation, Table2) for He, we have
introduced the following temperature dependent correction

By 1. =0.0154393 — 0.000085 1708 RT (4)

to be used when 7>70 K.

In the case of the Starling [eqns. (6)—(17)] and Lee-Kesler [eqns. (18)-(23)]
equations, we have included quantum effect corrected (for H, and He) pseudo-critical
state parameters (Tables 1 and 4).

Tables 4-6 pertain to the use of the Starling equation including several corrected
constant values. Table 7 gives the constants to be used in the Lee-Kesler equation.
Table 8 presents the conversion factors used; while Table 9 summarizes the results
obtained-the calculated RMS-percent errors (eqn. 1) by the equations of state and
the compounds selected.

The results obtained (Table 9) provide an idea of the magnitude and nature of
crrors found in terms of the compound involved and point out the need for
generating reliable specific constant sets (for instance, Benedict—-Webb—Rubin equa-
tion, Tables 2 and 3) through the use of proper calculating methods.

In this work the multiproperty regression method proved to be the most success-
ful, even if, in general, this method is time consuming and not always in itself
assures success.

However, the results also show (Table9) that the simpler, less time consuming
generalized methods can be used to advantage. Of these generalized methods, the
Lee—Kesler method (based on a combination of the modified Benedict—Webb-Rubin
equation and Pitzer’s [29-32] macroscopic theorem of corresponding states) ap-
peared to have an edge of superiority (Table 9). However, it did appear that in cases
where necessary state parameters and constants are reliable, the Benedict—Webb—
Rubin equation may still give better results.

* Z,v is defined as
n
Zav=(1/m) X Z, &
i=]

where Z is the ith (i=1, 2,..., n) compressibility factor.
** In the critical region, as a rule, the values of compressibility factor are low.
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TABLE 4

Physical properties for use with the Starling correlation ® (eqns. 6—17)

Compound Critical temperature Critical density Acentric factor
(K) - (gmolel™)

CH, 190.69 10.101® 0.008 ®
C,Hq 305.39 6.7569 0.1018
C;H, 369.89 4.9996 0.152°

N, 126.15 11.0997 0.035

co, 304.15 10.6384 0.225°

Ar 150.8 13.3511 —0.004

H,* 43.6 19.4175 -0.22°

He*© 10.47 26.667 —0.387°

a Starling {39-42] in his original paper states that only his suggested T, P, and w values should be used as
these were employed when he back calculated for the generalized method from the experimental data.
However, in this work we tried several sets of 7. P and w valucs. The T, P. and w values which appear
in Table 4 are those values which gave the best RMS (eqn. 1) results. As seen they include the original
Starling values as well as those specified by Reid et al. [36].
These values differ from the original Starling value set, and have been taken from Reid et al. [36].
Although Prausnitz and Chueh [33] specified the following quantum corrections for use in the
Redlich~Kwong equation, we believe that the same type of corrections may be extended to the Starling
and Lee—Kesler equations (see Table 1. also footnote h. this work)

70 po ¥.0

Toem—— i p=—— < =
¢ 1+QL8/mT) "° 1+(44.2/mT) 1—=(9.91/mT)

b

<

TABLE 5

Values of parameters 4; and B; for use with the Starling generalized equation of state [36]

Parameter Parameter value

subscript (j) A; B,
i 0.443690 - 0.115449
2 1.28438 —0.920731
3 0.356306 1.70871
4 0.544979 —0.2708%6
5 0.528629 0.349261
6 0.484011 0.754130
7 0.0705233 —0.044448
8 0.504087 1.32245
9 0.0307452 0.179433

10 0.0732828 0.463492

H 0.006450 —0.022143
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TABLE 7

Lee-Kesler constants {21] (eqns. 18-23)

Simple fluid Z'® calculation Reference fluid Z(” calculation
b, 0.1181193 0.2026579
by 0.265728 0.331511
b, 0.154790 0.027655
by 0.030323 © 0.203488
< 0.0236744 0.0313385
s 0.0186984 0.0503618
¢y 0.0 0.016901
s 0.042724 0.041577
d,x10% 0.155488 0.48736
dy X104 0.623689 0.0740336
B 0.65392 1.226
Y 0.060167 0.03754

TABLE 8

Conversion for equation of state constants

To convert from British to metric units divide by

A 6.04118 x10*
Ao 3.77122 x 103
B 2.56615 %103
B, 1.60192 X 10
C 1.957342 < 10°
Co 1.221875x 104
D 1.087410< 105
D, 2.19937 %104
E, 3.95887 %104
a 4.11076 %103
y 2.56615 %102

British: R=10.7335 p.s.i.a. ft.> (Ib. mole °R)~\.
Metric: R=0.08206 1 atm (g mole K)~'.

TABLE 9

Comparison of RMS—percent error [egn. (1)] for pure compounds 3

Compound Starling Lee—Kesler Benedict—-Webb~Rubin equation
generalized . generalized multiproperty regression
equations equations analysis constant sets

Co, 7.89 1.68 0.77

N, 1.51 1.06 2.15

Ar 1.34 0.79 340

H, 3.88 2.65 221

He 1.61 214 1.35

CH, 117 1.24 0.63

C,H, 0.95 - 1.15 1.26

C;H, 1.15 ' 1.17 0.66

Average 244 1.49 1.55

* Input compressibility data taken from Table 1.
® The calculated errors obtained with the equations fall within the corresponding experimental range.
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EQUATIONS OF STATE

Benedict— Webb-Rubin (BWR) equation
BWR-equétion of state is [1-6,28]

G o,
P=RTp+ (BORT-—AO ——i_%)p' + (bBRT — a)o®

(1 +v0?) exp(—vo?) (5)

+aap® +

Originating as a modification of the Beattie—Bridgeman equation. the BWR-
equation was obtained empirically by curve fitting the isometrics of the (P — R7p )/p2
vs. T plot. The BWR-equation has a sufficient number of constants to allow accurate
correlations [23]. Indeed for the systems where the constants and interaction
coefficients needed are available. the BWR equation may be highly reliable
[7a.8.10.23]). As a result of this work. it is felt that these constants should be
preferably generated by means of the presently popular multiproperty regression
method [7a.8]. Indeed. when compared (Tables 2 and 3). the predictive ability of the
simpler to use BWR-generalized method was found for the same compounas to be
less reliable, notably in the critical region. Table 2 presents the best set of conatants
from among the other sets available for some compounds (Table 3). However. it is
also felt that the fit of the BWR-generalized method may be improved if more
reliable constant sets are generated.

Starling equation

Already at the beginning of the use of the BWR:-equation difficulties were
encountered for some systems and in applications in the cryogenic region [38].
Starling [39-47]. therefore, modified the empirical BWR equation by introducing
temperature corrections to constants C, and a (eqn. S). so that the new equation
contained an additional three constants (D,, £, and d ) yielding

C D, E,
P:pRT+(BORT—AO——TZ-}-?%_;%)‘)Z+(bRT_a_%)p3
AW cp? 2 2
+a(aﬂ-—,1—_)p +—T—z(l+yp)exp(—-yp) (6)

Starling and Ham [40,41] generalized eqn. (6) by the following relations [compare
with eqn. (5)]

Pe By, =4, + Bw; (7
P, Aoi /RT, = A; + Byw; (8)
p. Co./RT2 = A4; + By, %)

Pcz,‘Y,- =4, + Byw,; | (10)
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p2b, = A5 + Bsw, (11)
pia,/RT, =Ag + Byw, | (12)
da; = A4 + Byw, (13)
pic; /RT? = Ay + Byw, (14)
D,, /RTS = Ay + By, (15)
pidi/RT'c? =A)p + Bow; (16)
E, /RT} =4, + B, exp(—3.8 w;) 17)

Starling and Ham [40,41] determined the values of 4 ;and B, (j=12,...,1],
Table 5) by simultaneous multiproperty regression analysis of PVT, enthalpy and
vapour pressure data. Multiproperty analysis calculated constant sets are available
for the lighter hydrocarbons and nitrogen. As in the case of the BWR-equation, the
Starling equation was also tested with both the generalized relations and the
multiproperty analysis method (Tables 5, 6 and 9). The results obtained indicate (the
same as for the BWR-equation) that more accurate P-V-T properties are obtained
using the multiproperty regression method rather than the generalized correlation. It
is regretable that constant sets have been published for relatively few compounds.

Lee—Kesler equation

The Lee-Kesler equation unlike the empirical Benedict—~Webb—~Rubin and Star-
ling equations, is a classical corresponding states correlation [21,29-32,43]. In order
to predict the compressibility factors, Lee and Kesler [21] took the macroscopic
corresponding states correlation of Pitzer [29-32,43)

Z=2Z9 +4z" (18)
then used a modified BWR—equation given in reduced coordinates as
PV, B C D
L of e = 4+ = + —y/V2 19

to predict the values of Z‘°’ and 4‘” (eqn. 18) Constants B, C, D (eqn. 19) are
defined as *

B=b,—(by/T,) — (b3 /T,) — (bs /T?) (20)
C=c,—(e;/T;) + (e5/T}) (21)
D=d,+(d,;/T;) (22)

* Constants used {eqns. (20)-(22)] are found in Table 7. Note that w in the Pitzer relation (eqn. 18) is
replaced by «/0.3978 for the Lee—Kesler equauon A value of 0.3978 represen?s the w-value for the
reference fluid used—octane
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The pseudo-reduced volume V is given as
V. = RV/RT, (23)

The theoretical basis of the predictive ability of the Lee-Kesler method is
determined through the inkerent characteristics of the Pitzer’s macroscopic theorem
of corresponding states [29-32] and the range of applicability of the modified
BWR-correlation [11] [egn. (19)]. It is well known that Pitzer’s macroscopic theorem
of corresponding states (using critical state properties and acentric factors) cannot
be used for substances consisting of large (such as polymers), non-spherical mole-
cules because this theorem is a first order perturbation about simple fluid (reference
fluid. acentric factor w = 0) corresponding states; it is based on the use of Taylor’s
series expansion in w, retaining only the first term of the expansion. Since the higher
order terms of this expansion are neglected. the theorem effectively can be applied
only to moderately large non-spherical molecules *. Indeed, the work of Lee and
Kesler is based on experimental data for hydrocarbons ranging from methane to
n-octane as the heavy reference fluid with a subsequent adjustment to other
substances. Whether the Lec—Kesler method may be extended through the inclusion
of higher order Taylor expansion terms [eqn. (18)] is an open question, especially as
at present these terms are not available **.

Our results (Table9) however indicate that the Lee—Kesler method predicts
reliably and appears to be applicable to a series of compounds some of which have
not even been included in the original work of Lee and Kesler. In view of our results,
the range of the predictive applicability of the Lee~Kesler method should be further
investigated, especially for the vapour pressure calculations.

EXPERIMENTAL DATA USED AND COMPUTER PROGRAMMING

The summary of experimental data used, along with their temperature and
pressure ranges, is given in Table 1. The experimental gas and liquid (near critical
point) state compressibility values for CH,, C,H¢, C;Hy, Ar, CO,, N,, He and H,
were taken from the data collection of Vargaftik [45]. Then these data were
cross-checked for accuracy against the values given by Din [15] and Reamer et al.
[35]. At this point we considered the presented data (Table 1) to be sufficiently
reliable and did not make any further study to re-evaluate their accuracy. Hence the
data set used for the present study is only a representative one.

The computer programs to calculate pure compound and their mixture densities,
heat capacities and enthalpies by means of BWR-equation had been set up already

* This observation is strengthened by the work of Hsiao and Lu [20] regarding an axtension of the
Pitzer's correlation for compressibility factor calculations.

** It is of interest to note that Hsiao and Lu [20] indicate through Z vs. w plots that it is not feasible nor
plausible to correlate the higher terms of eqn. (18). It is felt however that further studies should be
conducted 2iong these lines.
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in 1968 and 1969 by Johnson and Colver [7b]. Following the prototype of Johnson
and Colver [7b], our program reads-in the experimentally determined compressibility
factor Z at the T and P of interest, and compares these data with the compressibility
factor calculated by means of the given state equation at the same thermodynamic
conditions. The RMS-percent error [eqn. (1)] is used as a basis for comparison
introducing a measure of accuracy of fit for the given set of constants for each of the
equations of state tested to the experimental data (Tables 1 and 9). The interaction
loop of this- program has been made more efficient by starting with the ideal gas
density (ideal gas state PV = nRT is considered to be the reference state) rather than
with the zero-density state as proposed by Johnson and Colver [7b].

Similar programs have been set-up for mixture calculations [26]. Results from
these calculations will be presented in a separate work.

RESULTS AND DISCUSSION

Table 1 contains the experimental data used for testing the Benedict-Webb-
Rubin, Starling and Lee—Kesler equations of state. Table2 contains the constant
sets for the Benedict—-Webb-Rubin equation judged (this work) to be most accurate
for PVT-calculations for the given substances. Other constant sets from the literature
are found in Table 3. Included in each of these tables are the calculated RMS
percent error [eqns. (1) and (2)] values giving a measure of the accuracy of each
constant set considered. The listed “best” results (Table 2) obtained for CH,, C,H,,
C,H; and CQO, show the great accuracy obtainable even in the critical and liquid
regions. It should be noted that these suggested “best” constant sets (Table 2) have
been obtained by means of multiproperty regression analysis. Of interest is to note
that the poorer results found for N, and Ar (Table2) imply the overall inadequacy
of the presently available constant sets used for PV7T-calculations for these com-
pounds. .

In order to obtain more accurate results for the quantum fluids (in this case H,
and He) it is noted that reasonable results are obtained if at least one constant of the
constant set needed is made a function of temperature. The B correction for H, has
already been suggested by Eubanks [19] some time ago; while we (this work) suggest
the B,-correction for He [eqn. (4)] effectively reducing errors at temperatures above
70 K.

While Table2 indicated the accuracy possible with the Benedict—Webb—Rubin
equation, Table 3 shows how significant errors may be introduced if inappropriate
constant sets are chosen. However it appears (Table 3) that these errors are hardly
significant at low pressures and high temperatures (i.e. fluid approaches the ideal gas
state) but increase at the critical and liquid states. Our aualysis, nevertheless, did
indicate (Tables 2, 3 and 9) that errors in general tend to be greater when constant
sets determined from vapour pressure data alone are used to perform PVT-
calculations despite a few noted exceptions (Tables2 and 3). In addition, the
C,—temperature correction originally suggested by Benedict—Webb—-Rubin [1-6] to



fit the vapour pressure curve, does noi appear to be needed for PV 7-calculations *.

Table 3 also includes corrected constant sets where at least one of the constants
used appears to have had an incorrect form in the original article; for instance,
errors in converting the constants to appropriate units. Table§ lists conversion
factors used in this work.

The generalized Benedict-Webb-Rubin constants used (Table3) are those of
Cooper and Goldfranck [12] and those of Edmister et al. [17] (see Yorizane and
Masuoka [47] for additional discussion). A weakness in both the Benedict—Webb-
Rubin generalized methods tested is that they do not start out with sufficiently
accurate constant sets near the critical state. Consequently, the results near the
critical state are very poor for both of the methods tested.

Comparative testing of the Benedict—Webb—Rubin equation indicated (Tables 2
and 3) that for the same compounds. the results obtained via the multiproperty
regression analysis were superior to those obtained by means of either one of the
Benedict-Webb-Rubin generalized methods.

The Starling correlation (eqns. 6-17) was tested by both the generalized method
and the specific constant sets (multiproperty regression analysis) published by
Starling et al. [39-42). Table6 lists the results obtained by means of the specific
constant sets (including the corrected errors found in the reference articles) while
Table 9 gives the results calculated by means of the generalized method.

The generalized constant expressions for the quantal fluids H, and He (Table 9)
were modified using calculated (this work, Tables ]| and 4) pseudocritical tempera-
ture dependent values **. Results obtained by means of the Starling generalized
method (Table 9) in general seem to approach in accuracy those obtained by means
of the multiproperty regression analysis (Table6). Yet, results obtained for
quadrupolar CO, and quantal H, do show large deviations. This erratic behaviour
occurs near the critical point for CO,, and at low temperatures (<50 K) and/or
high pressures (=400 atm) for H,. Whether similar observations could be made for
other non-ideally behaving substances, is an open question worthy of further study.

Assuming that it is proper to generalize to that extent, the results in broad lines
indicate (Tables 1, 6 and 9) that the Starling correlation should be reliable for
hydrocarbons, less reliable for strongly interacting non-hydrocarbons especially
within the range of the critical point.

The fully generalized, ciassical corresponding state method of Lee and Kesler was
used with critical constants taken from Reid et al. [36], while the pseudocritical
parameters needed for quantal fluids H, and He were calculated by means of the

* This correction is in effect incorporated in the Starling correlation [eqns. (6)-(17)] as Dy and £ terms;
and in the Lee—Kesler method [eqns. (18)—(23)] as the b, term. It has also been used by Lin and Napthali
[24] by changing the C, /7 term into C, /T term, where the exponent » varies (limits of variation not
specified.}/

** These pseudocritical parameter—temperature relations were first introduced by Prausnitz and Chueh
{33] for use in the Redlich-Kwong equation. We have used these functional relations in this work, for
both. the Starling equation, and the Lee—Kesler method (Tables | and 4). '
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already introduced quantum correction (Table 1) *. The results obtained by the
Lee—Kesler method are given in Table9. These results show a high degree of
reliability for all compounds in all regions studied. Comparing the three methods
tested (Table 9) we note that the fully generalized Lee—Kesler method is easy to use
and very accurate in predicting PVT-properties. Also accurate is the Starling
equation in its generalized form although results appear to be less certain. The
original Benedict—Webb-Rubin equation may give highly reliable results provided
the input parameters are reliable. In general, the more recent constant sets**
obtained via the time consuming multiproperty regression analysis appear to give
good results. This study indicated that for the quantal fluids, H, and He, the
Benedict—Webb -Rubin equation may be used if one constant is made temperature
dependent. Additionally, both, the Starling and the Lee—Kesler generalized methods
work well if temperature dependent quantum correction pseudocritical parameters
are introduced (footnote **, p. 22) (Tables 1 and 4).

If the ease of use of the state equation is considered, then the Lee—Kesler method

would appear to be the best all-around method for calculating the pure gas
compressibilities {Table 9).

NOMENCLATURE

Agy, By, Gy a, b, ¢, a. vy Benedict-Webb-~Rubin equation constants

Ao+ Ay By, B;, Gy, Dy, Ey. a, b, ¢, d, a, v Starling and Starling-Han
equation constants

B, C, D, by, b,, b,, Cys €34 €34 €4, dy. d5.8, v Lee—Kesler equation
constants

Pressure

universal gas constant
temperature
compressibility factor
density

acentric factor

NN

£ ®

-

* For the Lee—Kesler equation quantum corrections work best with « set at 0. Note, however, that the
Lee—-Kesler equation works well for H, at all temperatures and for the He at temperatures =50 K with
experimental values of 7, P, w. :
**Yet it should also be recalled that best constants for compressibility may not be best for vapour
pressure data. For instance, Motard and Organick [27] reject Eubanks™ set [19] of H, constants (Tables 2
and 3) for vapour pressure calculations. Yet if we compare, we find that Eubanks [19] set of constants is
much better than the Motard and Organick [27] set for compressibility factors. This is also strengthened
by observing that the Lin and Naphthali [24] constant sets determined from vapour pressure data, show
poor performance for compressibility calculations. ‘
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Superscript

0

reference, ideal

Subscripts

o
r

critical state
reduced state (with respect to the vapour-liquid critical state)
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